- holomorphic mapping
- голоморфное отображение
English-Russian dictionary of technical terms. 2014.
English-Russian dictionary of technical terms. 2014.
Holomorphic functional calculus — In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function fnof; of a complex argument z and an operator T , the aim is to construct an operator:f(T),which in a… … Wikipedia
Riemann mapping theorem — In complex analysis, the Riemann mapping theorem states that if U is a simply connected open subset of the complex number plane Bbb C which is not all of Bbb C, then there exists a biholomorphic (bijective and holomorphic) mapping f, from U, onto … Wikipedia
Schwarz-Christoffel mapping — In complex analysis, a discipline within mathematics, a Schwarz Christoffel mapping is a transformation of the complex plane that maps the upper half plane conformally to a polygon. Schwarz Christoffel mappings are used in potential theory and… … Wikipedia
Open mapping theorem (complex analysis) — In complex analysis, the open mapping theorem states that if U is a connected open subset of the complex plane C and f : U → C is a non constant holomorphic function, then f is an open map (i.e. it sends open subsets of U to open subsets of… … Wikipedia
Open mapping theorem — may refer to: Open mapping theorem (functional analysis) or Banach–Schauder theorem states that a surjective continuous linear transformation of a Banach space X onto a Banach space Y is an open mapping Open mapping theorem (complex analysis)… … Wikipedia
Period mapping — In mathematics, in the field of algebraic geometry, the period mapping associates to a family of algebraic manifolds a family of Hodge structures. The family of Hodge structures is given concretely by matrices of integrals. To illustrate these… … Wikipedia
Carathéodory's theorem (conformal mapping) — See also Carathéodory s theorem for other meanings. In mathematics, Carathéodory s theorem in complex analysis states that if U is a simply connected open subset of the complex plane C, whose boundary is a Jordan curve Γ then the Riemann map : f … Wikipedia
Fixed point index — In mathematics, the fixed point index is a concept in topological fixed point theory, and in particular Nielsen theory. The fixed point index can be thought of as a multiplicity measurement for fixed points.The index can be easily defined in the… … Wikipedia
Abelian integral — In mathematics, an abelian integral in Riemann surface theory is a function related to the indefinite integral of a differential of the first kind. Suppose we are given a Riemann surface S and on it a differential 1 form ω that is everywhere… … Wikipedia
Glossary of arithmetic and Diophantine geometry — This is a glossary of arithmetic and Diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia